pyLIMA.microlstats module¶
-
pyLIMA.microlstats.
Akaike_Information_Criterion
(chi2, n_parameters)[source]¶ Compute the BIC statistic.
Parameters: Returns: the chi^2/dof
Return type:
-
pyLIMA.microlstats.
Bayesian_Information_Criterion
(chi2, n_data, n_parameters)[source]¶ Compute the BIC statistic.
Parameters: Returns: the chi^2/dof
Return type:
-
pyLIMA.microlstats.
normal_Anderson_Darling
(sample)[source]¶ Compute a Anderson-Darling test on the sample versus a normal distribution with mu = 0, sigma = 1
Parameters: sample (array_like) – the sample you want to check the “Gaussianity” Returns: the Anderson-Darling statistic, the Anderson-Darling critical values associated to the significance level of 15 % and the Anderson-Darling judgement :rtype: float, array_like, array_like
-
pyLIMA.microlstats.
normal_Kolmogorov_Smirnov
(sample)[source]¶ The moon illumination expressed as a percentage.
Parameters: - sun (astropy) – the sun ephemeris
- moon (astropy) – the moon ephemeris
Returns: a numpy array like indicated the moon illumination.
Return type: array_like
-
pyLIMA.microlstats.
normal_Shapiro_Wilk
(sample)[source]¶ Compute a Shapiro-Wilk test on the sample versus a normal distribution with mu = 0, sigma = 1
Parameters: sample (array_like) – the sample you want to check the “Gaussianity” Returns: the Shapiro-Wilk statistic and its related p_value Return type: float, float